Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Horst Puschmann, ${ }^{\text {a }}$ Judith A. K.
Howard, ${ }^{\text {a }}$ Bernardino Soto, ${ }^{\text {b }}$ Raul Bonne ${ }^{b}$ and Oscar Au-Alvarez ${ }^{\text {b }}$ *
${ }^{\text {a Department }}$ of Chemistry, University of Durham, Durham DH1 3LE, England, and ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Science, University of Oriente, Santiago de Cuba 90500, Cuba

Correspondence e-mail:
oscar.au-alvarez@durham.ac.uk

## Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
$R$ factor $=0.023$
$\omega R$ factor $=0.063$
Data-to-parameter ratio $=21.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

## Di- $\mu$-chloro-bis\{chloro[1,2-diphenyl-2-(4-chlorophenylamino)ethanoximato]copper(II)\}

The title compound, $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}\right)_{2}\right]$, is a centrosymmetric dimer bridged through the Cl atoms. The bridging $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ unit is planar and the geometry around the $\mathrm{Cu}^{\mathrm{II}}$ ions is that of a square pyramid.

## Comment

While studying the bioactive properties of $\mathrm{Cu}^{\mathrm{II}}$ complexes with different $-\mathrm{N}-\mathrm{C}-\mathrm{C}=\mathrm{N}-$ ligands we reported (Puschmann et al., 2001) the results of the crystal structure determination of di- $\mu$-chloro-bis\{chloro[1,2-diphenyl-2(phenylamino)ethanoximato]copper(II)\}, (II). In the continuation of this study, we obtained the title compound, (I), by the reaction of 1,2-diphenyl-2-(4-chlorophenylamino)ethanoxime with $\mathrm{CuCl}_{2}$. Compound (I) is similar to (II) but with an additional Cl atom in the phenyl amino group.


Compound (I) consists of binuclear molecules with Cl acting as the bridging atoms (Fig. 1). There is one half independent molecule per asymmetric unit. Each metal centre has a square-pyramidal coordination. The four short bonds are to two N atoms, a terminal Cl atom and a bridging Cl atom. The long apical bond involves the other bridging Cl atom.

The bridging $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ unit is completely planar. The $\mathrm{Cu}-\mathrm{Cl} 1$ and $\mathrm{Cu}-\mathrm{Cl}^{\mathrm{i}}{ }^{\text {[ }}$ [symmetry code: (i) $-x+3 / 2,-y+1 / 2,-z+1$ ] distances are not equal $[2.2454$ (3) and 2.6624 (4) $\AA$ ], the larger distance corresponding to the Cl in the apex of the square pyramid and the smaller one to the basal Cl . The $\mathrm{Cl} 1-$ $\mathrm{Cu}-\mathrm{Cl} 1^{\mathrm{i}}$ angle is larger than that found in (II) [94.306 (11) versus $\left.89.528(15)^{\circ}\right]$, while the $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Cu}^{i}$ angle is smaller than that found in (II) [85.694 (11) versus 90.472 (15) ${ }^{\circ}$.

The distance between Cu and $\mathrm{Cu}^{\mathrm{i}}$ is smaller than the value found in (II) [3.3514 (3) versus 3.5172 (4) $\AA$ ] and it is also smaller than the mean copper-copper distance ( $3.525 \AA$ ) found in the di- $\mu$-chloro pentacoordinated $\mathrm{Cu}^{\mathrm{II}}$ complexes registered in the April 2001 version of the Cambridge Structural Database (Allen \& Kennard, 1993).


Figure 1
View of (I) showing the atom labelling and $50 \%$ probability ellipsoids. [Symmetry code: (i) $-x+3 / 2,-y+1 / 2,-z+1$.]

The position of the OH group with respect to the terminal Cl 2 is not the same in (I) and (II). In (I), O and Cl 2 point approximately in the same direction and are close enough to form an intramolecular hydrogen bond (Table 2), but in (II), this type of interaction is not possible as the O 1 group and Cl 2 are pointed in opposite directions. As a measure of this, we compare the torsion angle $\mathrm{O}-\mathrm{N} 2-\mathrm{Cu}-\mathrm{Cl} 2\left[-4.81(9)^{\circ}\right]$ with the one found for the equivalent angle ( $\mathrm{O} 1-\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{Cl} 2$ ) in (II) $\left[-153.52(19)^{\circ}\right]$.

## Experimental

Compound (I) was obtained by slow addition of 30 ml of an absolute ethanol solution $(0.001 \mathrm{M})$ of 1,2-diphenyl-2-(4-chlorophenylamino) ethanoxime to 30 ml of an absolute ethanol solution ( 0.001 M ) of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. The resulting green precipitate was left overnight, filtered and washed several times with water, followed by ethanol and ether. Recrystallization from absolute ethanol after drying in vacuum gave crystals suitable for X-ray structural analysis. Melting point: 454-455 K.

## Crystal data

```
[Cu2Cl}(\mp@subsup{\textrm{C}}{20}{}\mp@subsup{\textrm{H}}{17}{}\mp@subsup{\textrm{ClN}}{2}{}\textrm{O}\mp@subsup{)}{2}{}
Mr}=942.4
Monoclinic, C2/c
a=20.6420 (6) \AA
b=11.5573 (4) \AA
c=17.7307 (5) \AA
\beta=104.666(1)}\mp@subsup{}{}{\circ
V=4092.1 (2) \AA \AA
Z=4
```


## Data collection

Bruker SMART CCD 1K area-
detector diffractometer
$\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.556, T_{\max }=0.606$
23518 measured reflections

## Refinement

Refinement on $F^{2}$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0291 P)^{2}\right. \\
&+3.7353 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.41 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.44 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.063$
$S=1.06$
5160 reflections
244 parameters

H -atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

| $\mathrm{Cu}-\mathrm{N} 2$ | $1.9835(11)$ | $\mathrm{Cu}-\mathrm{Cl} 2$ | $2.2763(4)$ |
| :--- | :---: | :--- | :--- |
| $\mathrm{Cu}-\mathrm{N} 1$ | $2.0692(11)$ | $\mathrm{Cu}-\mathrm{Cl}^{\mathrm{i}}$ | $2.6624(4)$ |
| $\mathrm{Cu}-\mathrm{Cl} 1$ | $2.2454(3)$ | $\mathrm{Cu}-\mathrm{Cu}^{\mathrm{i}}$ | $3.3514(3)$ |
|  |  |  |  |
| $\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 1$ | $80.16(4)$ | $\mathrm{N} 2-\mathrm{Cu}-\mathrm{Cl}^{\mathrm{i}}$ | $96.90(3)$ |
| $\mathrm{N} 2-\mathrm{Cu}-\mathrm{Cl} 1$ | $166.27(3)$ | $\mathrm{N} 1-\mathrm{Cu}-\mathrm{Cl}^{\mathrm{i}}$ | $86.25(3)$ |
| $\mathrm{N} 1-\mathrm{Cu}-\mathrm{Cl} 1$ | $92.72(3)$ | $\mathrm{Cl} 1-\mathrm{Cu}-\mathrm{Cl}^{\mathrm{i}}$ | $94.306(11)$ |
| $\mathrm{N} 2-\mathrm{Cu}-\mathrm{Cl} 2$ | $91.07(3)$ | $\mathrm{Cl} 2-\mathrm{Cu}-\mathrm{Cl}^{\mathrm{i}}$ | $98.193(12)$ |
| $\mathrm{N} 1-\mathrm{Cu}-\mathrm{Cl} 2$ | $170.62(3)$ | $\mathrm{Cu}-\mathrm{Cl} 1-\mathrm{Cu}^{\mathrm{i}}$ | $85.694(11)$ |
| $\mathrm{Cl} 1-\mathrm{Cu}-\mathrm{Cl} 2$ | $95.170(13)$ |  |  |

Symmetry code: (i) $\frac{3}{2}-x, \frac{1}{2}-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1^{\mathrm{i}}$ | 0.93 | 2.87 | $3.2632(11)$ | 107 |
| $\mathrm{O}-\mathrm{H} 0 \cdots \mathrm{Cl} 2$ | 0.84 | 2.29 | $2.9756(11)$ | 139 |

Symmetry code: (i) $\frac{3}{2}-x, \frac{1}{2}-y, 1-z$.

Data collection: SMART-NT (Bruker, 1998); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

## References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
Bruker (1998). SMART-NT and SAINT-NT. Versions 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Puschmann, H., Batsanov, A. S., Howard, J. A. K., Soto, B., Bonne, R. \& AuAlvarez, O. (2001). Acta Cryst. E57, m524-m526.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

